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We calculate the upper critical field in superconductors without inversion symmetry at arbitrary temperatures
in the presence of scalar impurities. Both orbital and spin �paramagnetic� mechanisms of pair breaking are
considered. The superconducting phase transition at nonzero field occurs into a helical vortex state, in which
the order parameter is modulated along the applied field �in a cubic crystal�. The helical state is stable with
respect to disorder. However, if the difference between the densities of states in the electron bands that are split
by spin-orbit coupling is neglected, then the order-parameter modulation is present only at low temperatures,
and only if the system is sufficiently clean and paramagnetically limited. This state resembles the Larkin-
Ovchinnikov-Fulde-Ferrell state in centrosymmetric superconductors.
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I. INTRODUCTION

Recently, superconductivity has been discovered in a
number of noncentrosymmetric compounds. Physical proper-
ties of these materials vary considerably from CePt3Si �Ref.
1�, in which strong electron correlations are responsible for a
heavy-fermion behavior and the superconductivity is likely
anisotropic with gap nodes, to Li2Pd3B and Li2Pt3B �Ref. 2�,
which show rather conventional features, described by the
Bardeen-Cooper-Schrieffer �BCS� theory of phonon-
mediated pairing.

The absence of inversion symmetry in the crystal lattice
brings about important qualitative changes, both in normal
and superconducting properties, compared with the cen-
trosymmetric case. These differences are highlighted, in par-
ticular, by different responses to an external magnetic field.
Distinctive features of noncentrosymmetric superconductors
include a strongly anisotropic spin susceptibility with a large
residual component,3–9 magnetoelectric effect,3,10–12 and
nonuniform �“helical”� superconducting states.13–15

In this paper, we extend the classic theory of the upper
critical field, Hc2�T�, in BCS superconductors, which was
developed in Refs. 16 and 17 �see also Ref. 18�, to the non-
centrosymmetric case. The spin-orbit �SO� coupling of elec-
trons with a noncentrosymmetric crystal lattice considerably
changes the nature of single-electron states, lifting spin de-
generacy of the energy bands. This modifies the Zeeman
coupling of band electrons with magnetic field, which in turn
affects the paramagnetic pair breaking. The magnetic phase
diagram of noncentrosymmetric superconductors has been
previously studied in a two-dimensional case,19,20 in which
the orbital effects are not important. In Ref. 15, the upper
critical field for a three-dimensional Rashba superconductor
was calculated in the absence of impurities. The effects of
disorder on Hc2 in the Ginzburg-Landau regime near the
zero-field critical temperature have been investigated in Ref.
21 for an arbitrary pairing symmetry but without paramag-
netic effects. In this paper, we include both orbital and para-
magnetic mechanisms of pair breaking, as well as scalar dis-
order, at arbitrary temperatures. We consider a “minimal”
model of a three-dimensional weak-coupling superconductor
of cubic symmetry with an isotropic parabolic band split in

two by the SO coupling. We assume that the ratio of the SO
band splitting to the Fermi energy is small �which is the case
in most known noncentrosymmetric materials�, and neglect
the impurity-induced mixing of the singlet and triplet com-
ponents of the gap function.

The paper is organized as follows: In Sec. II, we derive
the equations for Hc2�T�, relegating some of the technical
details to the Appendix. In Sec. III, the transition temperature
as a function of the external field is calculated in the
Ginzburg-Landau region near the zero-field critical tempera-
ture Tc0. In Sec. IV, we consider the purely paramagnetic
limit, both in the clean and disordered cases. The general
case, with the orbital pair breaking included, is studied in
Sec. V. Section VI contains a discussion of our results.
Throughout the paper we use the units in which �=kB=1.

II. BASIC EQUATIONS

Let us consider a noncentrosymmetric superconductor
with the Hamiltonian given by H=H0+Himp+Hint. The first
term,

H0 = �
k

��0�k���� + ��k�����ak�
† ak�, �1�

describes noninteracting electrons in the crystal lattice poten-
tial, where � ,�= ↑ ,↓ are spin indices, �0�k� is the quasipar-
ticle energy, and �̂ are the Pauli matrices. We assume a
parabolic band and include the chemical potential in the dis-
persion function: �0�k�=k2 /2m�−�F, where m� is the effec-
tive mass, �F=k0

2 /2m�, and k0 is the Fermi wave vector in the
absence of the SO coupling. In Eq. �1� and everywhere be-
low, summation over repeated spin indices is implied while
summation over band indices is always shown explicitly.

The second term in Eq. �1� describes a Rashba-type SO
coupling of electrons with the crystal lattice.22 We focus on
the case of a noncentrosymmetric cubic crystal with the
point-group G=O, which is applicable, for instance, to
Li2�Pd1−x ,Ptx�3B. The simplest expression for the SO cou-
pling compatible with all symmetry requirements has the fol-
lowing form:
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��k� = �0k , �2�

where �0 is a constant. It is convenient to characterize the SO
coupling strength by a dimensionless parameter,

� =
m���0�

k0
. �3�

Diagonalization of the Hamiltonian �1� yields two nondegen-
erate bands labeled by helicity �=	, which are described by
the following dispersion functions:


��k� = �0�k� + ����k�� =
k2 − k0

2

2m�
+ ���0�k . �4�

The SO band splitting is given by ESO=2��0�k0, therefore �
=ESO /4�F. While the two Fermi surfaces, defined by the
equations 
��k�=0, have different radii: kF,�=k0��1+�2

−���, the Fermi velocities are the same: v�=vFk̂, where
vF= �k0 /m���1+�2.

Scattering of electrons at isotropic scalar impurities is in-
troduced according to

Himp =� d3rU�r���
†�r����r� , �5�

where the impurity potential U�r� is a random function with
zero mean and the correlator 	U�r1�U�r2�
=nimpU0

2��r1−r2�,
nimp is the impurity concentration, and U0 has the meaning of
the strength of an individual pointlike impurity. The field
operators have the usual form: ���r�=V−1/2�keikrak�, where
V is the system volume.

We assume that there is a local attraction between elec-
trons, e.g., due to phonons, and describe the Cooper pairing
by a BCS-like Hamiltonian:

Hint = − V� d3r�↑
†�r��↓

†�r��↓�r��↑�r� , �6�

where V�0 is the coupling constant. A detailed analysis of
the relation between the microscopic pairing interaction and
the gap symmetry in the band representation can be found in
Ref. 23. In particular, in the BCS-contact model �6� the local
pairing of electrons with opposite spins translates into the
same-helicity pairing, the superconducting gap function has
only intraband components, and the order parameter is rep-
resented by a single complex function �r�.

External magnetic field can be included in the electron
band theory by making the so-called Peierls substitution24 in
the dispersion functions 
��k�:

k → K = − i
�

�r
+

e

c
A�r� , �7�

where e is the absolute value of the electron charge and A�r�
is the magnetic vector potential. Near the upper critical field,
the magnetic induction is uniform, B�r�=H, so that A�r�
= �H�r� /2 in the symmetric gauge. This approach has been
used to microscopically derive the Ginzburg-Landau func-
tional for noncentrosymmetric superconductors, both in the
clean14 and disordered21 cases. However, the bands �4� are
nonanalytic in k, and the Peierls substitution leads to ill-

defined operators. To avoid this, one can make the substitu-
tion �7� directly in the original Hamiltonian �Eq. �1��. Then,
the SO coupling, the impurity scattering, and the magnetic
field are all incorporated in the following single-electron
Hamiltonian in the coordinate-spin representation:

ĥ =
K2

2m�
+ �0K�̂ +

g

2
�BH�̂ + U�r� − �F, �8�

where g is the Landé factor, and �B is the Bohr magneton.
The final expressions for observable properties, in particular
the upper critical field, do not actually depend on whether the
Peierls substitution is made in the spin or band representa-
tions.

A. Gap equations

Following the standard textbook procedure, one can cal-
culate the difference between the disorder-averaged free en-
ergies in the superconducting and normal states at the same
temperature and field. In the vicinity of the upper critical
field Hc2�T�, one can keep only the terms quadratic in the
order parameter in the free-energy expansion:

F =� � dr1dr2
��r1�S�r1,r2��r2� . �9�

We assume that the superconducting phase transition is of
second order. It should be noted that the validity of this as-
sumption at all temperatures is not obvious �see, e.g., a dis-
cussion in Sec. IV C below� and should be verified by exam-
ining the higher-order terms in the free energy, which is
beyond the scope of the present work. The kernel in Eq. �9�
has the following form:

S�r1,r2� =
1

V
��r1 − r2� − T�

n

�X�r1,r2;�n� , �10�

where

X�r1,r2;�n� =
1

2
g��

† g��	G���r1,r2;�n�G���r1,r2;− �n�
imp,

�11�

�n= �2n+1��T is the fermionic Matsubara frequency, and
ĝ= i�̂2. The prime in the second term in Eq. �10� means that
the summation is limited to ��n���c, where �c is the BCS
frequency cutoff. The angular brackets denote the impurity

averaging, and Ĝ�r1 ,r2 ;�n� is the Matsubara Green’s func-
tion of electrons in the normal state, which satisfies the equa-
tion

�i�n − ĥ1�Ĝ�r1,r2;�n� = ��r1 − r2� , �12�

with the Hamiltonian ĥ given by expression �8�. The sub-

script “1” means that ĥ acts on the first argument of the
Green’s function. The critical temperature at a given field, or
inversely the critical field at a given temperature, is found
from the condition that the lowest eigenvalue of the operator

Ŝ, defined by the kernel �10�, is zero.
At zero field, Eq. �12� yields the following expression for

the average Green’s function:21
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Ĝ�k,�n� = �
�=	
�̂��k�G��k,�n� , �13�

where

�̂��k� =
1 + �k̂�̂

2
�14�

are the band projection operators �k̂=k / �k��, and

G��k,�n� =
1

i�n − 
��k� + i� sign �n
�15�

are the electron Green’s functions in the band representa-
tion. Here �=1 /2� is the elastic-scattering rate, �
= �2�nimpU0

2NF�−1 is the electron mean-free time due to im-
purities, NF= �N++N−� /2, and N� is the Fermi-level density
of states in the �th band.

Using the standard techniques,25 the impurity average of
the product of the two Green’s functions in Eq. �11� can be
represented graphically by ladder diagrams �see Fig. 1� �we
assume the disorder that is sufficiently weak for the diagrams
with crossed impurity lines to be negligible�. Summation of
the diagrams is facilitated by representing the impurity line
�which corresponds to each “rung” of the ladder� as a sum of
spin-singlet and spin-triplet terms:

nimpU0
2������ =

1

2
nimpU0

2g��g��
† +

1

2
nimpU0

2g��g��
† , �16�

where ĝ= i�̂�̂2. We introduce an impurity-renormalized gap
function D���q ,�n�, which satisfies an integral equation

D̂�q,�n� = �q�ĝ +
1

2
nimpU0

2ĝ� d3k

�2��3 tr�ĝ†Ĝ�k + q,�n�

� D̂�q,�n�ĜT�− k,− �n��

+
1

2
nimpU0

2ĝ� d3k

�2��3 tr�ĝ†Ĝ�k + q,�n�

� D̂�q,�n�ĜT�− k,− �n�� . �17�

Seeking solution in the form

D̂�q,�n� = d0�q,�n�ĝ + d�q,�n�ĝ , �18�

we obtain the following equations for da�r ,�n� �a
=0,1 ,2 ,3�:

da�q,�n� = �q��a0 + ��
b=0

3

Yab�q,�n�db�q,�n� , �19�

where �q� is the Fourier transform of the order parameter,
and

Yab�q,�n� =
1

2�NF

�� d3k

�2��3 tr�ĝa
†Ĝ�k + q,�n�ĝbĜT�− k,− �n�� ,

�20�

with ĝ0= ĝ, and ĝi= ĝi for i=1,2 ,3. We see that, in addition
to the spin-singlet component d0�q ,�n� of the gap function,
impurity scattering can induce a nonzero spin-triplet compo-
nent d�q ,�n�. Note that the free energy depends only on the
singlet component: from Eqs. �11� and �19�, we obtain

F =� d3q

�2��3
��q�� 1

V
�q� − �NFT�

n

�
d0�q,�n� − �q�

� � .

�21�

Substituting the Green’s functions �13� into Eq. �20� and
calculating the spin traces, we obtain for the singlet-singlet

part of the 4�4 matrix Ŷ:

Y00�q,�n� =
1

2�NF
�
�
� d3k

�2��3G��k + q,�n�G��− k,− �n�

=
1

2�
�

�� 1

��n� + � + i� sign �n
�

k̂

=  1

��n� + � + i� sign �n
�

k̂
, �22�

where

�	 =
N	
NF

= 1	 � �23�

are the fractional densities of states in the two bands,

��k ,q�=vFk̂q /2, and 	�. . .�
k̂ denotes the averaging over the
directions of k. The parameter

� =
N+ − N−

N+ + N−
, �24�

which characterizes the difference between the band densi-
ties of states, can be expressed in terms of the SO coupling
strength �3� as follows:

��� =
2��1 + �2

1 + 2�2 . �25�

Similarly, for the singlet-triplet mixing part we obtain

Y0i�q,�n� = Yi0�q,�n�

=
1

2�NF
�
�

�� d3k

�2��3 k̂iG��k + q,�n�G��− k,− �n�

= � k̂i

��n� + � + i� sign �n
�

k̂
. �26�

Finally, the triplet-triplet part can be represented as follows:

δα

β γ

g +
β

α

γ

δ

µ ν

g + ...
ρ σ

+g g+

FIG. 1. Impurity ladder diagrams in the Cooper channel. Lines
with arrows correspond to the average Green’s functions of elec-
trons in the spin representation, ĝ= i�̂2, and the impurity �dashed�
lines are defined in the text �see Eq. �16��.
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Yij�q,�n� = Yij
�1��q,�n� + Yij

�2��q,�n� , �27�

where

Yij
�1��q,�n� =

1

2�NF

��
�
� d3k

�2��3 k̂ik̂ jG��k + q,�n�G��− k,− �n�

= k̂ik̂ j

��n� + � + i� sign �n
�

k̂
, �28�

and

Yij
�2��q,�n� =

1

2�NF
�
�
� d3k

�2��3 ��ij − k̂ik̂ j − i�eijlk̂l�

�G��k + q,�n�G−��− k,− �n�

=
1

2�
�

 �ij − k̂ik̂ j − i�eijlk̂l

��n� + � + i�� + �ESO/2�sign �n
�

k̂
.

�29�

We see that in the band representation the singlet impurity
scattering channel, which is described by the first term in Eq.
�16�, causes only the scattering of intraband pairs between
the bands. In contrast, the triplet channel can mix intraband
and interband pairs, the latter being described by Yij

�2�.
The interband contribution to Yij can be neglected in the

limit when the SO coupling is strong compared with both the
cut-off energy �c and the elastic-scattering rate �. Setting
q=0 in Eqs. �28� and �29�, we obtain

Yij
�1��0,�n� =

�ij

3���n� + ��
� Yintra��n��ij ,

and

Yij
�2��0,�n� =

2�ij

3���n� + ���1 + r2�
� Yinter��n��ij ,

where r��n�=ESO /2���n�+��. Due to the BCS cutoff, the
maximum value of �n is equal to �c; therefore rmin
�ESO /max��c ,���1. From this it follows that

max
n

Yinter��n�
Yintra��n�

=
2

1 + rmin
2 � �max��c,��

ESO
�2

� 1.

Therefore the interband contribution is small compared with
the intraband one at all Matsubara frequencies.

The superconducting critical temperature is found by set-
ting q=0, then Y0i=Yi0=0, and the solution of Eq. �19� has
the form d0= �1+� / ��n��. Substituting this into Eq. �21�
and comparing the result with Eq. �9�, we obtain

S�q = 0� =
1

V
− �NFT�

n

�
1

��n�
, �30�

which yields the superconducting critical temperature:

Tc0 =
2eC

�
�ce

−1/NFV, �31�

where C�0.577 is Euler’s constant. Thus there is an analog
of Anderson’s theorem in noncentrosymmetric superconduct-
ors with a BCS-contact pairing interaction: The zero-field
critical temperature is not affected by scalar disorder.21

Now let us turn on a uniform magnetic field H=Hẑ. Its
orbital effect is taken into account in the usual way by re-
placing q→D=−i� + �2e /c�A in Yab�q ,�n�, which become
differential operators of infinite order. The gap equations
�Eq. �19�� then take the following form:

�1 − �Ŷ00�d0 − �Ŷ0idi =  ,

− �Ŷi0d0 + ��ij − �Ŷij�dj = 0. �32�

Solution of these equations in the general case is rather cum-
bersome. In order to make progress, we use the fact that in
practice the SO coupling is much weaker than the Fermi
energy. In terms of the parameter �, this translates into the
following condition: ����1. This allows us to neglect the
triplet component of the gap function. Indeed, using the fact
that the singlet-triplet mixing is described by Y0i=Yi0, which
are proportional to � �see Eq. �26��, one can solve the gap
equations by iterations. It is easy to see that d�O���; there-

fore the correction to d0= �1−�Ŷ00�−1 due to the impurity-
induced singlet-triplet mixing is of the order of �2 and will
be neglected.

B. Equation for Hc2(T)

Keeping only the singlet gap component, we have d0

= �1−�Ŷ00�−1. Substituting this in Eq. �21�, we can repre-

sent the operator Ŝ as follows:

Ŝ =
1

V
− �NFT�

n

��1 − �Ŷ00��n��−1Ŷ00��n� , �33�

where Ŷ00��n� is defined by the kernel

Y00�r1,r2;�n� =
1

2�NF
g��

† g��

� 	G���r1,r2;�n�
imp	G���r1,r2;− �n�
imp.

�34�

Although the expression �33� is approximate �with the cor-
rections of the order of �2�, it has the advantage of being
relatively simple and captures important physics of the prob-
lem, including the properties of various nonuniform super-
conducting states created by the external field �see Secs.
III–V below�. The case of arbitrary SO coupling, with both
singlet and triplet channels present but without paramagnetic
effects, is considered in Ref. 26.

It is shown in the Appendix that the eigenfunctions of

Ŷ00��n� are the Landau levels �N , p
, which are labeled by
two quantum numbers: a non-negative integer N and a real p.
The latter is proportional to the wave vector of the order-
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parameter modulation along the applied field: p=�Hqz, where
�H=�c /eH is the magnetic length. The corresponding eigen-
values can be written as follows:

Ŷ00��n��N,p
 = yN,p��n��N,p
 , �35�

where

yN,p��n� = �
0

�

due−���n�+��u

��
0

1

dsFp�u,s�e−v2�1−s2�/2LN�v2�1 − s2�� .

�36�

Here v= �vF /2�H�u, LN�x� are the Laguerre polynomials,

Fp�u,s� = cos�p0vs�cos�pvs� − � sin�p0vs�sin�pvs� ,

�37�

p0=g�BH�H /vF, and � is defined by Eq. �24�. Note that, in
centrosymmetric isotropic superconductors with nonmag-

netic impurities, the eigenvalues of Ŷ00��n� are given by the
same expression �36� but with Fp�u ,s�=cos�p0v�cos�pvs�.
This is still different from Eq. �37�, even if one sets �=0 in
the latter. The reason is that Eq. �37� is valid under the as-
sumption that the Zeeman energy is small compared with the
SO band splitting.

Since the Landau levels are eigenfunctions of Ŷ00��n� at

all frequencies, the operator Ŝ �see Eq. �33�� is also diagonal
in the basis of �N , p
. Using Eqs. �30� and �31�, we can elimi-
nate both the frequency cutoff and the coupling constant
from Eq. �33�. In this way we obtain an equation for the
magnetic field at which a superconducting instability charac-
terized by N and p develops:

ln
Tc0

T
= �T�

n
� 1

��n�
−

yN,p��n�
1 − �yN,p��n�� . �38�

The upper critical field, Hc2�T�, is obtained by maximizing
the solution of the above equation with respect to both N and
p.

It is convenient to introduce the reduced temperature,
magnetic field, and disorder as follows:

t =
T

Tc0
, h =

2H

H0
, � =

�

�Tc0
, �39�

where H0=�0 /�
0
2, �0=�c /e is the magnetic-flux quantum,

and 
0=vF /2�Tc0 is the superconducting coherence length.
Equation �38� then takes the form

ln
1

t
= 2�

n�0
� 1

2n + 1
− t

wn
�N,Q��t,h�

1 − �wn
�N,Q��t,h�� , �40�

where

wn
�N,Q��t,h� = �

0

�

d�e−��2n+1�t+����
0

1

ds�Q��,s�

�exp�−
h

4
�2�1 − s2��LN�h

2
�2�1 − s2�� ,

�41�

and

�Q��,s� = cos��h�s�cos�Q�s� − � sin��h�s�sin�Q�s� .

�42�

The parameter

� =
g

2

�BH0

2�Tc0
�43�

measures the relative importance of the paramagnetic and
orbital contributions to the magnetic suppression of super-
conductivity �note that � is proportional to the Maki param-
eter �M, introduced in Ref. 27�. For the upper critical field in
the reduced notations, we have

hc2�t� = max
N,Q

hN,Q�t� , �44�

where hN,Q�t� is the solution of Eq. �40�, N is the Landau-
level index, and Q=
0qz is the dimensionless wave vector of
the superconducting instability.

The purely orbital limit is obtained by formally setting g
to zero. Then �=0, and Eq. �40� takes exactly the same form
as in centrosymmetric BCS superconductors. Therefore, if
the Zeeman interaction is neglected then the absence of in-
version symmetry in the weak SO coupling limit does not
bring about any new features in Hc2�T�, compared with the
centrosymmetric case, which is described by the Helfand-
Werthamer theory.16 The maximum critical field corresponds
to N=Q=0 at all temperatures. In particular, at T=0 and in
the absence of impurities one obtains: Hc2�0�= �e2−C /8�H0
�0.52H0. This can be used to relate � to experimentally
observable quantities as follows:

�� 0.21
Hc2�0��T�

Tc0�K�
. �45�

Here we assumed g=2.

III. GINZBURG-LANDAU REGIME

At weak external field, the critical temperature is close to
Tc0, i.e., the reduced temperature t is close to one. In this
limit, one can solve Eq. �40� analytically by expanding wn

�N,Q�

in powers of h and Q �we set N=0�. We seek solution in the
form

tc�h� = 1 − a1h − a2h2 + O�h3� . �46�

It follows from Eq. �42� that the maximum critical tempera-
ture corresponds to

Q = − ��h . �47�

After some straightforward algebra, we obtain the following
expressions for the coefficients in the expansion �46�:
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a1 =
1

3
S2,1, �48�

a2 =
1

18
S2,1

2 +
1

9
S2,1S1,2 −

2

5
S2,3 −

1

9
�S3,3 +

1

3
�2S2,1,

�49�

with

Sk,l��� = 2�
n�0

1

�2n + 1�k�2n + 1 + ��l .

Since our model is valid only in the limit of weak SO cou-
pling, ����1, we have omitted in these expressions the terms
containing �2. In the clean limit, we have

a1 =
7��3�

12
,

a2 =
49�2�3�

96
−

31��5�
40

+
7��3�

12
�2,

where ��x� is the Riemann zeta function.
Since Eq. �48� does not contain �, the slope of the upper

critical field near Tc0 is entirely determined by the orbital
effects. Returning to dimensional variables, we obtain

�dHc2

dT
�

T=Tc0

=
6�

S2,1���
�0Tc0

vF
2 , �50�

which has exactly the same form as in isotropic centrosym-
metric superconductors.28 From this expression it follows
that, in particular, the upper critical-field slope in our model
is enhanced by disorder, in agreement with the results ob-
tained in Ref. 21.

The effects of the Zeeman interaction on the critical tem-
perature appear only in the second order in h and are de-
scribed by the last term in Eq. �49�. If the difference between
the band densities of states is taken into account �i.e., if �
�0�, then the order parameter is modulated along the ap-
plied field, with the period given by Eq. �47�.

In the limit of large �, the Zeeman term dominates and
the critical-field slope diverges: Hc2�T���Tc0−T. Similar to
the orbital critical field �50�, the paramagnetic critical field in
the Ginzburg-Landau regime is enhanced by disorder. The
paramagnetic pair breaking in noncentrosymmetric super-
conductors has some peculiar features, compared with the
centrosymmetric case, and is studied in detail in the next
section.

IV. PARAMAGNETIC LIMIT

The purely paramagnetic limit corresponds to �→� in
Eq. �40�. Due to the fast oscillations of �Q, the last two
factors in the s integral in Eq. �41� can be replaced by one,
and the solution becomes degenerate with respect to N. We
have

wn�Q� =
1

2�
�

��Re 1

�2n + 1�t + � + i�Q + �h̃�k̂z
�

k̂

,

�51�

where

h̃ =
g

2

�BH

�Tc0
= �h . �52�

Calculating the Fermi-surface integrals, we obtain

wn�Q� =
1

2�
�

��
1

Q + �h̃
arctan

Q + �h̃

�2n + 1�t + �
. �53�

Further analytical progress can be made in two limiting
cases: clean ��=0� and “dirty” ���1�, while the intermediate
disorder strengths can only be studied numerically.

A. Clean case

In the clean limit, it is convenient to go back to expression
�51� and substitute it into Eq. �40�, with the following result:

ln
1

t
=

1

2�
�

��Re  �1

2
+ i

Q + �h̃

2t
k̂z��

k̂
− �1

2
� ,

�54�

where  �x� is the digamma function. From this we obtain

t = exp�max
y

I�y,z�� , �55�

where y=Q /2t, z= h̃ /2t,

I�y,z� = �1

2
� −

1

2�
�

��
Im ln ��1/2 + iy + i�z�

y + �z
,

and ��x� is the gamma function. At any given z, if the maxi-
mum of I�y ,z� is achieved at y=yc, then the wave vector of
the superconducting instability is Q=2tyc, and the corre-

sponding critical field is h̃=2tz. The critical field of a
second-order phase transition into a uniform superconduct-
ing state can be found by setting y=0 in Eq. �55�. In particu-

lar, at zero temperature this phase transition occurs at h̃0
=1 /2eC−1�0.76.

The pair-breaking effect of the Zeeman interaction can be
reduced by allowing the pairs to have a nonzero center-of-
mass momentum. The outcome of the competition between
the Zeeman energy and the gradient energy depends on the
difference between the densities of states in the two bands,
which in turn depends on the ratio of the SO band splitting to
the Fermi energy �see Eqs. �23� and �25��. If it is neglected,
i.e., �=0, then one obtains from Eq. �55� that at z!z�

�0.44, which corresponds to high temperatures, t� t�

�0.68, and low fields, h̃! h̃��0.60, the maximum critical
field is achieved at Q=0, and the phase transition occurs into
the uniform superconducting state. However, at t! t� the
maximum critical field corresponds to Q�0, and the phase
transition occurs into a nonuniform superconducting state
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similar to the Larkin-Ovchinnikov-Fulde-Ferrell �LOFF�
state.29 The order parameter is modulated along the field:
�r�=1eiqz+2e−iqz, where q=Q /
0. The coefficients 1,2
are found from the higher-order terms in the free energy. In
Refs. 20 and 30 this was done for a Rashba superconductor,
and it was shown that both a multiple-q �or stripe� LOFF
state and a single plane-wave state are possible, depending
on temperature.

If the difference between �+ and �− is taken into account,
then the right-hand side of Eq. �54� is no longer even in Q,
and the maximum critical field corresponds to Q�0 at all
temperatures 0� t!1. In this case, the phase transition oc-
curs into a single plane-wave, or helical,13 superconducting
state with �r�=0eiqz. In particular, at weak fields near t
=1, the maximum of I�y ,z� is achieved at yc=−�z, which

corresponds to Q=−�h̃. For the critical-field one obtains

h̃�t→1 =� 12

7��3�
�1 − t�1/2. �56�

At low temperatures, we use the fact that maxy I�y ,z�
=−��+ /2�ln�8eC−1z� in the limit z→� �for �+��−�. There-
fore,

h̃�t→0 =
1

4eC−1 t−�−/�+. �57�

In these expressions we have omitted the terms proportional
to �2. The temperature dependence of the critical field is
shown in Fig. 2, both in the LOFF state, for �+=�−=1, and in
the helical state, for �+=0.8 and �−=1.2.

The most notable feature of the phase diagram is a con-
siderable weakening of the paramagnetic pair breaking at
low temperatures, which is manifested in the divergence of
the critical field at t→0.31 Similar behavior has also been
found in two-dimensional noncentrosymmetric
superconductors.19,20

We would like to mention that the paramagnetic pair
breaking disappears altogether in the �rather unrealistic� ex-
treme single-band case ���=1, which corresponds to a very

strong SO coupling, �→� �see Eq. �25��. Although a quan-
titative treatment of this case is beyond the limits of appli-
cability of our model, one can use simple arguments to show
that the critical temperature is not affected by the applied
field. We first note that the Zeeman interaction causes an
anisotropic deformation of the electron bands: 
��k�
→
��k�+��g /2��Bk̂H. The intraband pairing of electrons
with opposite momenta costs additional energy at H�0, re-
sulting in the uniform superconductivity being suppressed by
the Zeeman field. On the other hand, it is easy to see that the
field-induced deformation of the bands amounts to shifting
the bands in the opposite directions along the field: 
��k�
→
��k+q��, where q�=��g /2��BH /vF. If the Cooper pairs
in the “+” and “−” bands are completely decoupled, or if
there is just one band present, then the band shifts can be
eliminated by independent gauge transformations, and the
Zeeman pair breaking will be absent. According to Ref. 23,
in the BCS-contact model �6� the pairs in the two bands are
in fact strongly coupled so that both condensates are charac-
terized by the same wave function �r�. The band shifts can-
not be eliminated simultaneously in both bands by any gauge
transformation. Therefore, in general there is some energy
penalty associated with the Cooper pairing �both uniform
and nonuniform� at H�0, compared with the zero-field case.

B. Disordered case

At arbitrary disorder, the paramagnetic critical field is ob-
tained by numerical solution of Eq. �40�, with wn given by
expression �53�. At �=0, we find that the LOFF modulation
is suppressed by impurities �see Fig. 3� and disappears at �
��c�1.16. In contrast, the helical modulation at ��0 sur-
vives even if the impurity scattering is strong, as shown in
Fig. 4. In both cases, the low-temperature divergence of the
critical-field characteristic of a clean system �see Eq. �57�� is
removed by disorder.

In the dirty limit ��1, one can obtain an equation for the

critical field in a closed form. We shall see that both Q and h̃
scale as ����. Therefore, one can perform the Taylor ex-
pansion in Eq. �53�:
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FIG. 2. Paramagnetic critical field h̃=�h in the clean case for
the LOFF state ��=0� and the helical state with �=−0.2. The inset
shows the temperature dependence of the wave vector Q of the
order-parameter modulation along the field.
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FIG. 3. Paramagnetic critical field in the LOFF state ��=0� for
different strengths of disorder: �=0.2, 0.5, 2.0, and 5.0 from bottom
to top. The inset shows the order-parameter modulation along the
field �for �=2.0 and 5.0, Q=0 at all temperatures�.
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wn�Q� �
1

�2n + 1�t + �
�1 −

W

��2n + 1�t + ��2� ,

where W= �Q2+ h̃2+2�Qh̃� /3. The main contribution to the
Matsubara sum in Eq. �40� comes from �2n+1�t��, and we
obtain ln�1 / t�= �1 /2+W /2�t�− �1 /2�. It is easy to see
that the maximum critical temperature is achieved when W
has a minimum with respect to Q, which happens for Q

=−�h̃, at all temperatures. Thus we arrive at a well-known
universal equation, which describes magnetic pair breaking
in superconductors:32

ln
1

t
= �1

2
+
�

t
� − �1

2
� . �58�

The pair-breaker strength is characterized by �= h̃2 /6�. Ana-
lytical expressions for the critical field can be obtained in the
weak-field limit:

h̃�t→1 =�12�

�2 �1 − t�1/2, �59�

and also at low temperatures:

h̃�t→0 =� 3�

2eC . �60�

Thus we come to the conclusion that, while the critical
field near Tc0 is enhanced by disorder, the impurity response
at low temperatures is nonmonotonic: initially, the disorder
cuts off the singularity at T→0, thus reducing the critical
field. However, as the disorder increases one eventually
reaches the universal regime, in which the critical field grows
as ��.

C. First-order phase transition

Let us now compare the paramagnetic critical fields found
above with the critical field of a first-order phase transition
�FOPT� into a uniform superconducting state at zero tem-

perature. For simplicity, we neglect the difference between
the band densities of states and set g=2. Following the argu-
ments of Clogston and Chandrasekhar,33 we obtain
�BHFOPT= �0 /�2��1−"s /"P�−1/2, where 0= �� /eC�Tc0 is
the gap magnitude at zero temperature and field, "s is the
residual susceptibility at T=0 in the superconducting state,
and "P=2�B

2NF is the Pauli susceptibility in the normal state.
Therefore,

h̃FOPT�t→0 =
1

�2eC�1 −
"s

"P
�−1/2

. �61�

According to Ref. 9, the residual susceptibility in our model
is given by the following expression:

"s

"P
=

2

3
+

1

3
��x� , �62�

where x=2� /30, and

��x� = 1 −
�

2x
�1 −

4

��1 − x2
arctan�1 − x

1 + x
�

�at x�1 this function is evaluated using arctan�ix�
= i tanh−1�x��. In the clean limit, ��0�=0 and "s /"P=2 /3.

Therefore, h̃FOPT=�3 /2e−C�0.69, which is much lower than
the divergent expression �57�. In the dirty limit x→�, we
have ��x��1−� /2x, and it follows from Eq. �61� that

h̃FOPT=�2� /�eC. Although the critical field of the first-order
phase transition into a uniform superconducting state in-
creases with disorder, it remains lower than the critical field
of the second-order phase transition into the helical state,
which is given by expression �60�.

V. GENERAL CASE: ORBITAL EFFECTS

Solution of Eq. �40� at all temperatures and for arbitrary
values of � and � can only be obtained numerically. To fa-
cilitate numerical analysis, we represent the integrals in Eq.
�41� in a somewhat shorter form by introducing the Cartesian
coordinates �= ��1 ,�2 ,�3�, such that �= ���, �s=�3, and
�2�1−s2�=��

2 =�1
2+�2

2. Using the Fourier transform,

� d3�eik�e−a�

�2 =
4�

k
arctan

k

a
,

we obtain

wn
�N,Q��t,h� =

1

2�
�

���
0

� kdk
�k2 + �Q + ��h�2

� arctan��k2 + �Q + ��h�2

�2n + 1�t + �
�IN�k� , �63�

where

IN =
1

2�
� d2��e−ik��e−h��

2 /4LN�h��
2

2
� . �64�

In the purely paramagnetic limit, IN=2���k�, and one recov-
ers Eq. �53�.
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FIG. 4. Paramagnetic critical field in the helical state with �
=−0.2 for different strengths of disorder: �=0.2, 0.5, 2.0, and 5.0
from bottom to top. The inset shows the order-parameter modula-
tion along the field.
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The maximum critical field corresponds to N=0, in which
case I0�k�= �2 /h�exp�−k2 /h�. The order parameter is nonuni-
form along the direction of the applied field while its depen-
dence on the transverse coordinates is given by the usual
Abrikosov vortex solution. As in the purely paramagnetic
limit, the phase diagram turns out to be different for �=0
�LOFF vortex state� and ��0 �helical vortex state�.

Solution of Eqs. �40� and �63� shows that the LOFF state
is suppressed by the orbital effects even in the clean case.
There is a critical strength of the paramagnetic interaction,
�c, below which the LOFF state disappears, i.e., Q=0 at all
temperatures �in the clean limit �c�0.66�. This is qualita-
tively similar to the way the orbital interaction affects the
LOFF state in centrosymmetric superconductors �see Ref.
34�. In contrast, the helical modulation at ��0, albeit weak-
ened by the orbital effects, does not completely disappear
until �=0.

In order to study the combined effect of the orbital inter-
action and impurities, we focus on the helical vortex state
with �=−0.2. We consider �=0.2 �which is close to the es-
timates for the Li2�Pd1−x ,Ptx�3B family of superconductors,
as obtained from Eq. �45� using the data from Ref. 38� and
also �=2.0. The upper critical-field curves for a range of
disorder strengths are shown in Figs. 5 and 6. We see that, if
� is not too large, disorder produces a monotonic enhance-
ment of Hc2 at all temperatures.

In the dirty limit, it is again possible to obtain a relatively
simple equation for the upper critical field. Repeating the
arguments from Sec. IV B, one can show that the equation
has the universal form �58�, with the paramagnetic and or-
bital interactions both contributing to the pair-breaking
strength:

� =
h + �2h2

6�
. �65�

The maximum critical field is achieved for Q=−��h. Near
Tc0, superconductivity is suppressed by magnetic field ac-
cording to Eq. �46�, in which a1=�2 /12�+O��−2� and a2
= ��2 /12���2+O��−2�. At low temperatures, returning to di-

mensional variables, we arrive at the following expression
for the upper critical field:

Hc2�0� =
�0

2�
0
2

1

2�2��1 +
6�2

�eC
�

Tc0
− 1� . �66�

In the weak SO coupling limit, corrections to this expression
are of the order of �2. In the orbital limit �→0, one obtains
Hc2�0�= �3� /2�eCTc0���0 /2�
0

2�, while in the paramagnetic
limit �→�, Eq. �60� is recovered. We see that the upper
critical field is enhanced by disorder.

As for the wave vector of the helical modulation, expres-
sion �47� is exact only in the Ginzburg-Landau regime and in
the dirty limit. In clean systems at low temperatures, devia-
tions of Q / �−��h� from unity become quite substantial �see
Fig. 7�.

VI. CONCLUSIONS

We have calculated the upper critical field in noncen-
trosymmetric superconductors at arbitrary temperatures, both
in the clean case and in the presence of scalar impurities,
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FIG. 5. Upper critical field hc2�t� in the helical vortex state with
�=0.2 and �=−0.2 for different strengths of disorder: �=0.0, 0.2,
0.5, 2.0, and 5.0 from bottom to top.
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FIG. 6. Upper critical field hc2�t� in the helical vortex state with
�=2.0 and �=−0.2 for different strengths of disorder: �=0.0, 0.2,
0.5, 2.0, and 5.0 from bottom to top.
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using as an example a crystal of cubic symmetry with a
BCS-contact pairing interaction. Our derivation relies on the
assumption that the SO band splitting is small compared to
the Fermi energy. In this case, one can neglect the disorder-
induced triplet component of the gap function, which consid-
erably simplifies the calculations, without losing information
about the interesting physics of the problem, in particular
about the properties of nonuniform superconducting states.

As in the centrosymmetric case, the pair breaking is pro-
vided by both the orbital and the Zeeman �paramagnetic�
interactions. If the former is dominant, i.e., �→0 �see Eqs.
�43� and �45��, then the lack of inversion symmetry in the
weak SO coupling limit does not have any appreciable effect
on the upper critical field, which is described by the standard
Helfand-Werthamer theory. However, as � increases, so do
the deviations from the centrosymmetric case. In the extreme
paramagnetic limit, corresponding to �→�, the critical field
diverges at T→0 in the clean case.

Impurities suppress both the orbital and paramagnetic pair
breakings �see Eqs. �58� and �65��, resulting in an enhance-
ment of the upper critical field. In the strongly paramagnetic
limit, the effects of disorder on the low-temperature critical
field are nonmonotonic: at weak disorder Hc2 decreases but
in the dirty limit the overall enhancement of the critical field
takes over.

The spatial structure of the superconducting order param-
eter is, in general, different from the centrosymmetric case.
As soon as the difference between the densities of states in
the SO-split bands, N+ and N−, is taken into account, the
system exhibits a helical instability, in which the order pa-
rameter has a phase gradient along the applied magnetic field
�in a cubic crystal�. The helical superconducting state turns
out to be robust with respect to both the orbital pair breaking
and disorder. In particular, the wave vector of the supercon-
ducting instability in the Ginzburg-Landau regime and in the
dirty limit is given by qz=−2���H /H0�
0

−1. In contrast, the
LOFF state, which occupies the low-temperature part of the
phase diagram at N+=N−, is quickly suppressed by both the
orbital interaction and disorder similarly to its counterpart in
the centrosymmetric case.34,35

Let us discuss the application of our results to the family
of cubic noncentrosymmetric compounds Li2�Pd1−x ,Ptx�3B,
where x ranges from zero to one. The critical temperature
varies from 7–8 K for x=0 to 2.2–2.8 K for x=1. The elec-
tronic band structure also exhibits considerable variation: the
SO band splitting is strongly anisotropic, and can be as large
as 30 meV in Li2Pd3B and 200 meV in Li2Pt3B �Ref. 36�.
Experimental data37,38 seem to agree that Li2Pd3B is a con-
ventional BCS-like superconductor with no gap nodes. In
contrast, the gap structure in Li2Pt3B is still a subject of
controversy. While earlier experiments �see Ref. 37� sug-
gested the presence of lines of nodes in the gap, the recent
�SR and specific-heat data38 have found no evidence of
those. Moreover, according to Ref. 38, the whole
Li2�Pd1−x ,Ptx�3B family of compounds are single-gap isotro-
pic superconductors. If this is the case then our model based
on a BCS-contact pairing Hamiltonian should be applicable.
In these compounds, the paramagnetic effects seem to be
rather weak: the parameter � varies from 0.10 for x=0 to
0.15 for x=1 �using the data from Ref. 38�. This explains

why the experimental Hc2 curves in these materials show a
good agreement with the Helfand-Werthamer theory. Still,
the absence of inversion symmetry should manifest itself in a
long-wavelength helical modulation of the order parameter
along the applied field. Using the maximum values of the SO
band splitting from Ref. 36, we have ESO�30 meV in
Li2Pd3B and ESO�200 meV in Li2Pt3B. Then one can ob-
tain the following order-of-magnitude estimates for the wave
vector of the helical modulation: qz
0�10−3H /Hc2�0� in
Li2Pd3B, and qz
0�10−2H /Hc2�0� in Li2Pt3B.

ACKNOWLEDGMENTS

The author is pleased to thank V. P. Mineev for stimulat-
ing discussions. The financial support from the Natural Sci-
ences and Engineering Research Council of Canada is grate-
fully acknowledged.

APPENDIX: SPECTRUM OF Ŷ00(�n)

The problem of finding the upper critical field is reduced
to the calculation of the average normal-state Green’s func-
tion in a uniform magnetic field. The difference from the
centrosymmetric case is due to the presence of the SO cou-
pling term in the Hamiltonian �8�. Following Ref. 39, we
represent the Green’s function before disorder averaging in a
factorized form:

G���r1,r2;�n� = Ḡ���r1,r2;�n�ei#�r1,r2�, �A1�

where #�r1 ,r2�= �e /c��r1

r2A�r�dr, and the integration is per-
formed along a straight line connecting r1 and r2. From Eq.
�12� we obtain an equation for the gauge-invariant factor,

�i�n − ĥ̄1�Ĝ̄�r1,r2;�n� = ��r1 − r2� , �A2�

where

ĥ̄1 =
K1

2

2m�
+ �0K1�̂ +

g

2
�BH�̂ + U�r1� − �F, �A3�

and K1=−i�1+ �e /2c�H� �r1−r2�.
As discussed in Sec. II A, in the limit of weak SO cou-

pling it is sufficient to consider only the singlet-singlet terms
in the Cooper impurity ladder. After disorder averaging, the
kernel �34� takes the following form:

Y00�r1,r2;�n� = Y00�r1 − r2,�n�e2i#�r1,r2�, �A4�

where the translationally invariant part is defined by its Fou-
rier transform as follows:

Y00�q,�n� =
1

2�NF

�� d3k

�2��3 tr�Ĝ̄�k + q,�n��̂2Ĝ̄T�− k,− �n��̂2� .

�A5�

The Green’s functions here are disorder-averaged solutions
of Eq. �A2�. The next step is to use the identity
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e2i#�r1,r2��r2�=e−i�r1−r2�D1�r1�, where D=−i� + �2e /c�A,

from which it follows that the operator Ŷ00��n� can be ob-
tained from Y00�q ,�n� by replacing q→D. The gauge-
invariant part of the Green’s function contains the effects of
the SO coupling, the Zeeman interaction, the orbital Landau
quantization, and disorder. We treat the magnetic-field effects

on Ĝ̄ perturbatively, which is legitimate if the Zeeman en-
ergy is small compared with the SO band splitting, i.e.,
�g /2��BH�ESO, and also if the temperature is not very low
so that the Landau-level quantization can be neglected.

In the clean case, keeping only the terms linear in H in
Eq. �A2�, we have

�i�n − ĥ0 + Hm̂�Ĝ̄�r,�n� = ��r� , �A6�

where ĥ0=�0�−i��+��−i���̂ is the zero-field Hamiltonian,
and m̂=−�B��g /2��̂+ �R� �̂��, with �̂= �m /m���−i��
+m�0�̂, has the meaning of the magnetic-moment operator

for band electrons. The eigenvalues of ĥ0 are given by 
��k�
�see Eq. �4��. It is straightforward to show that the linear in H

effects on Ĝ̄ are due to the Zeeman interaction �the first term

in m̂�. Then, Ĝ̄�k ,�n� can be represented in the form �13�,
with the band Green’s functions now given by

G��k,�n� =
1

i�n − 
��k� − ��g/2��Bk̂H
. �A7�

Thus, the electron bands are deformed by the magnetic field:


��k�→
��k�+��g /2��Bk̂H.
In the presence of impurities, again keeping the magnetic

field only in the Zeeman term in Eq. �A3�, we obtain for the
average Green’s function,

Ĝ̄�k,�n� = �i�n − �0�k� − �̃�k��̂ − �ˆ
imp��n��−1, �A8�

where �̃�k�=�0k+ �g /2��BH, and

�ˆ
imp��n� = nimpU0

2� d3u

�2��3 Ĝ̄�k,�n� �A9�

is the impurity self-energy in the self-consistent Born ap-
proximation. We seek the self-energy matrix in a spin-

diagonal form: �ˆ imp��n�=−i���n��̂0. Then, Ĝ̄�k ,�n�
=���̂��k�G��k , �̃n�, where �̃n=�n+���n�, and the band
projection operators and the band Green’s function are given
by expressions �14� and �A7�, respectively. Substituting this
into Eq. �A9� and neglecting the energy dependence of the
band densities of states on the scale of the Zeeman energy,
we find �̃n=�n+� sign �n. Therefore,

Ĝ̄�k,�n� = �
�

�̂��k�

�
1

i�n − 
��k� − ��g/2��Bk̂H + i� sign �n

.

�A10�

Inserting the last expression in Eq. �A5�, we obtain

Y00�q,�n� =
1

2�
�

�� 1

��n� + � + i�� sign �n
�

k̂
,

�A11�

where ��=N� /NF, and ���k ,q�=vFk̂�q+�g�BH /vF� /2.
Next we use in Eq. �A11� the identity a−1=�0

�du e−au and

make the substitution q→D to represent Ŷ00��n� as a differ-
ential operator of infinite order,

Ŷ00��n� =
1

2
�

0

�

du e−u���n�+���
�

��Ô�. �A12�

Here

Ô� = exp�−
iuvF

2
k̂�D + �

g�BH

vF
���

k̂
�A13�

do not depend on �n because the zero-field Fermi surfaces
are invariant under k→−k.

To find the eigenfunctions and eigenvalues of Ô�, we fol-
low the procedure outlined in Ref. 16. We choose the z axis
along the external field so that H=Hẑ, and introduce the
operators

a	 = �H
Dx	 iDy

2
, a3 = �HDz, �A14�

where �H=�c /eH is the magnetic length. It is easy to check
that a+=a−

† and �a− ,a+�=1; therefore a	 have the meaning of
the raising and lowering operators while a3=a3

† commutes
with both of them: �a3 ,a	�=0. We use the basis of states
�N , p
 �Landau levels�, such that

a+�N,p
 = �N + 1�N + 1,p
 ,

a−�N,p
 = �N�N − 1,p
 ,

a3�N,p
 = p�N,p
 ,

where N=0,1 , . . ., and p is a real number. Then,

Ô��N,p
 =
1

2
�

0

�

d$ sin $e−iv�p+�p0�cos $

� �
0

2� d%

2�
e−iv sin $�e−i%a++ei%a−��N,p


=
1

2
�

−1

1

ds e−iv�p+�p0�se−�v2/2��1−s2�

�LN�v2�1 − s2���N,p
 , �A15�

where v= �vF /2�H�u, p0=g�BH�H /vF, and LN�x� is the La-
guerre polynomial of degree N. We see that the Landau lev-

els �N , p
 are eigenfunctions of Ô� and, therefore, of Ŷ00��n�.
Introducing �= ��+−�−� /2 and summing over � in Eq. �A12�,
we arrive at expression �36�.

UPPER CRITICAL FIELD IN NONCENTROSYMMETRIC… PHYSICAL REVIEW B 78, 224520 �2008�

224520-11



1 E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt, A.
Gribanov, Yu. Seropegin, H. Noël, M. Sigrist, and P. Rogl, Phys.
Rev. Lett. 92, 027003 �2004�.

2 K. Togano, P. Badica, Y. Nakamori, S. Orimo, H. Takeya, and K.
Hirata, Phys. Rev. Lett. 93, 247004 �2004�; P. Badica, T. Kondo,
and K. Togano, J. Phys. Soc. Jpn. 74, 1014 �2005�.

3 V. M. Edelstein, Zh. Eksp. Teor. Fiz. 95, 2151 �1989� �Sov.
Phys. JETP 68, 1244 �1989��.

4 L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004
�2001�.

5 S. K. Yip, Phys. Rev. B 65, 144508 �2002�.
6 P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist, Phys.

Rev. Lett. 92, 097001 �2004�; 93, 099903�E� �2004�.
7 P. A. Frigeri, D. F. Agterberg, and M. Sigrist, New J. Phys. 6,

115 �2004�.
8 K. V. Samokhin, Phys. Rev. Lett. 94, 027004 �2005�.
9 K. V. Samokhin, Phys. Rev. B 76, 094516 �2007�.

10 L. S. Levitov, Yu. V. Nazarov, and G. M. Eliashberg, Pis’ma Zh.
Eksp. Teor. Fiz. 41, 365 �1985� �JETP Lett. 41, 445 �1985��.

11 V. M. Edelstein, Phys. Rev. Lett. 75, 2004 �1995�.
12 S. Fujimoto, Phys. Rev. B 72, 024515 �2005�.
13 D. F. Agterberg, Physica C 387, 13 �2003�.
14 K. V. Samokhin, Phys. Rev. B 70, 104521 �2004�.
15 R. P. Kaur, D. F. Agterberg, and M. Sigrist, Phys. Rev. Lett. 94,

137002 �2005�.
16 E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 �1966�.
17 N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev.

147, 295 �1966�.
18 C. T. Rieck, K. Scharnberg, and N. Schopohl, J. Low Temp.

Phys. 84, 381 �1991�.
19 V. Barzykin and L. P. Gor’kov, Phys. Rev. Lett. 89, 227002

�2002�.
20 O. Dimitrova and M. V. Feigel’man, Phys. Rev. B 76, 014522

�2007�.
21 V. P. Mineev and K. V. Samokhin, Phys. Rev. B 75, 184529

�2007�.
22 E. I. Rashba, Fiz. Tverd. Tela �Leningrad� 2, 1224 �1960� �Sov.

Phys. Solid State 2, 1109 �1960��.

23 K. V. Samokhin and V. P. Mineev, Phys. Rev. B 77, 104520
�2008�.

24 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics
�Butterworth-Heinemann, Oxford, 1995�, Pt. 2.

25 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods
of Quantum Field Theory in Statistical Physics �Dover, New
York, 1975�.

26 K. V. Samokhin, Phys. Rev. B 78, 144511 �2008�.
27 K. Maki, Physics 1, 127 �1964�.
28 L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 37, 1407 �1959� �Sov. Phys.

JETP 10, 998 �1960��.
29 A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,

1136 �1964� �Sov. Phys. JETP 20, 762 �1965��; P. Fulde and R.
A. Ferrell, Phys. Rev. 135, A550 �1964�.

30 D. F. Agterberg and R. P. Kaur, Phys. Rev. B 75, 064511 �2007�.
31 One should keep in mind that Eq. �51� and subsequent results are

valid only if the Zeeman energy is small compared with the SO

band splitting, i.e., at h̃�ESO /Tc0.
32 M. Tinkham, Introduction to Superconductivity �McGraw-Hill,

New York, 1996�, Chap. 10.2.
33 A. M. Clogston, Phys. Rev. Lett. 9, 266 �1962�; B. S. Chan-

drasekhar, Appl. Phys. Lett. 1, 7 �1962�.
34 L. W. Gruenberg and L. Gunther, Phys. Rev. Lett. 16, 996

�1966�.
35 L. G. Aslamazov, Zh. Eksp. Teor. Fiz. 55, 1477 �1968� �Sov.

Phys. JETP 28, 773 �1969��.
36 K.-W. Lee and W. E. Pickett, Phys. Rev. B 72, 174505 �2005�.
37 H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D. Vander-

velde, K. Togano, M. Sigrist, and M. B. Salamon, Phys. Rev.
Lett. 97, 017006 �2006�; M. Nishiyama, Y. Inada, and G.-Q.
Zheng, ibid. 98, 047002 �2007�.

38 P. S. Häfliger, R. Khasanov, R. Lortz, A. Petrović, K. Togano, C.
Baines, B. Graneli, and H. Keller, arXiv:0709.3777 �unpub-
lished�.

39 L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918 �1959� �Sov. Phys.
JETP 9, 1364 �1959��.

K. V. SAMOKHIN PHYSICAL REVIEW B 78, 224520 �2008�

224520-12


